Template:Intmath
Template page
More actions
This template generates integral symbols using unicode, for inline {{math}} formulae as an alternative to LaTeX generated in <math>.
Parameters
The template has three parameters, applicable one by one:
- Integral sign: Choose one of:
- int for ∫ symbol is U+222B
 - iint for ∬ (double integral, U+222C),
 - iiint for ∭ (triple integral, U+222D),
 - oint for ∮ (contour integral, U+222E),
 - varointclockwise for ∲ (clockwise contour integral, U+2232),
 - ointctrclockwise for ∳ (anticlockwise contour integral, U+2233),
 - oiint for ∯ (closed surface integral, U+222F),
 - oiiint for ∰ (closed volume integral, U+2230).
 
 - Subscript: Enter the subscript (symbol or short expression), for the lower limit or denoting an n-dimensional space or the (n − 1)- dimensional boundary.
 - Superscript: Enter the superscript (symbol or short expression) for the upper limit.
 
NB:
- Applying 
font-style: italic;orfont-style: oblique;to the integral symbol has no effect in Firefox, it remains upright. E.g.<span style="font-style: italic;">∫</span>yields ∫;<span style="font-style: oblique;">∫</span>yields ∫.
 - This template already includes {{su}}.
 
Examples
No {{math}}
- Γ(z) = ∫∞
0 e−ttz − 1dt 
Γ(''z'') = {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>''t''<sup>''z'' − 1</sup>''dt''
- ∲
C F(x) ∙ dx = −∳
C F(x) ∙ dx 
{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''
- ∯
∂V E ∙ dS = 1/ε0∭
V ρ dV 
- ∯
∂V B ∙ dS = 0 
- ∮
∂S E ∙ dx = −∬
S ∂B/∂t ∙ dS 
- ∮
∂S B ∙ dx = ∬
S (μ0J + 1/c2∂E/∂t) ∙ dS 
{{intmath|oiint|∂''V''}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|''V''}} ''ρ'' ''dV''
{{intmath|oiint|∂''V''}} '''B''' ∙ ''d'''''S''' = 0
{{intmath|oint|∂''S''}} '''E''' ∙ ''d'''''x''' = −{{intmath|iint|''S''}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''
{{intmath|oint|∂''S''}} '''B''' ∙ ''d'''''x''' = {{intmath|iint|''S''}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''
{{math}}
- Γ(z) = ∫∞
0 e−ttz − 1dt 
{{math|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>''t''<sup>''z'' − 1</sup>''dt''}}
- ∲
CF(x) ∙ dx = −∳
C F(x) ∙ dx 
{{math|{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}
- ∯
∂V E ∙ dS = 1/ε0∭
V ρ dV 
- ∯
∂V B ∙ dS = 0 
- ∮
∂S E ∙ dx = −∬
S ∂B/∂t ∙ dS 
- ∮
∂S B ∙ dx = ∬
S (μ0J + 1/c2∂E/∂t) ∙ dS 
{{math|{{intmath|oiint|∂''V''}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|''V''}} ''ρ'' ''dV''}}
{{math|{{intmath|oiint|∂''V''}} '''B''' ∙ ''d'''''S''' {{=}} 0}}
{{math|{{intmath|oint|∂''S''}} '''E''' ∙ ''d'''''x''' {{=}} −{{intmath|iint|''S''}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}
{{math|{{intmath|oint|∂''S''}} '''B''' ∙ ''d'''''x''' {{=}} {{intmath|iint|''S''}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''}}
See also
- {{Intorient}}
 - {{oiiint}}
 - {{oiint}}
 - Wikipedia:Rendering math